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Software Issues at Scale

« DARPA Study on Exascale

— Power discussion dominates all others; concurrency is the
only significant approach:

* lower clock, increases parallelism
— Power density and system power (20-155MW)

e Summary Issues for Software

— Exascale will require billion-way concurrency with 1K
cores per chip

— Departmental scale (1 PF) systems will require millions of
threads

— The memory/core ratio will drop by at least an order of
magnitude across machine size

 Note: Weak Scaling at Risk!

— A new model for fault tolerant software is needed:
checkpoints to disk will be impractical

« These issues will creep into Petascale




Need a Fundamentally New Approach

e Rethink hardware
— What limits performance
— How to build efficient hardware

 Rethink software
— Massive parallelism

— Eliminate scaling bottlenecks replication,
synchronization

 Rethink algorithms
— Massive parallelism and locality
— Counting Flops is the wrong measure




Rethinking Programming
Models




Two Parallel Language Questions

 What is the parallel control model?

e
F o

data parallel dynamic single program
(singe thread of control) threads multiple data (SPMD)

 What is the model for sharing/communication?

P receive
store 7 — =
load -~ send
shared memory message passing

implied synchronization for message passing, not shared memory _




A Brief History of Languages

When vector machines were king

— Parallel “languages” were loop annotations (IVDEP)
— Performance was fragile, but there was good user support

When SIMD machines were king
— Data parallel languages popular and successful (CMF, *Lisp, C*, ...)
— Quite powerful: can handle irregular data (sparse mat-vec multiply)

— Irregular computation is less clear (multi-physics, adaptive meshes,
backtracking search, sparse matrix factorization)

When shared memory machines (SMPs) were king
— Shared memory models, e.g., OpenMP, Posix Threads, are popular

When clusters took over
— Message Passing (MPIl) became dominant

We are at the mercy of HW, but SW takes the blame.




To Virtualize or Not

The fundamental question facing in parallel
programming models is:

What should be virtualized?

Hardware has finite resources

— Processor count is finite

— Registers count is finite

— Fast local memory (cache and DRAM) size is finite
— Links in network topology are generally < n?

Does the programming model (language+libraries)
expose this or hide it?

— E.g., one thread per core, or many?

* Many threads may have advantages for load balancing, fault
tolerance and latency-hiding

» But one thread is better for deep memory hierarchies
How to get the most out of your machine?




PGAS Languages

* Global address space: thread may directly read/write remote data

—“Virtualizes” or hides the distinction between shared/distributed
memory

 Partitioned: data is designated as local or global
— Does not hide this: critical for locality and scaling
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« UPC, CAF, Titanium: Static parallelism (1 thread per proc)

— Does not virtualize processors; main difference from HPCS
languages which have many/dynamic threads




What Makes a Language/Library PGAS?

Support for distributed data structures
— Distributed arrays; local and global pointers/references

One-sided shared-memory communication

— Simple assignment statements: x[i] = y[i]; or t=*p;

— Bulk operations: memory copy or array copy

— Optional: remote invocation of functions

Control over data layout

— PGAS is not the same as (cache-coherent) “shared memory”
— Remote data stays remote in the performance model

Synchronization
— Global barriers, locks, memory fences

Collective Communication, IO libraries, etc.




What Make Communication One-Sided?

two-sided message host
: CPU
messfage id data payload —> network
one-sided put message :
Interface
address data payload —>
memory

« A one-sided put/get message can be handled directly by a
network interface with RDMA support
— Avoid interrupting the CPU or storing data from CPU
(preposts)
« A two-sided messages needs to be matched with areceive
to identify memory address to put data
— Offloaded to Network Interface in networks like Quadrics
— Need to download match tables to interface (from host)

Joint work with Dan Bonachea




Performance Advantage of
One-Sided Communication

 The put/get operations in PGAS languages (remote read/write)
are one-sided (no required interaction from remote proc)

* This is faster for pure data transfers than two-sided send/receive
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Communication Strategies for 3D FFT

 Three approaches:
—Chunk:

e Wait for 2nd dim FFTs to finish

« Minimize # messages

—Slab:

 Wait for chunk of rows destined

for 1 proc to finish

e Overlap with computation

—Pencil:

e Send each row as it complete

« Maximize overlap and
e Match natural layout

chunk = all rows with same destination

g/‘l |

pencil =1 row

slab = all rows in a single plane with
same destination

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea




NAS FT Variants Performance Summary
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Arrays in a Global Address Space

 Key features of Titanium arrays
— Generality: indices may start/end and any point
— Domain calculus allow for slicing, subarray, transpose and other

operations without data copies

« Use domain calculus to identify ghosts and iterate:

foreach (p In gridA.shrink(l).domain())

 Array copies automatically work on intersection

“restricted” (non-ghost)

cells

gridB.copy(gridA.shrink(1));

——_— - ___1

-

— |

>
ghost cells — gridA  gridB

Joint work with Titanium group

intersection (copied area)

Useful in grid
computations
including AMR




Languages Support Helps
Productivity

C++/Fortran/MPI AMR

« Chombo package from LBNL 30000
e Bulk-synchronous comm:
— Pack boundary data between procs
— All optimizations done by programmer 25000
@ AMRElliptic
Titanium AMR Sooon | | RToOkS
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Work by Tong Wen and Philip Colella; Communication optimizations joint with Jimmy Su



Particle/Mesh Method: Heart Simulation

« Elastic structures in an incompressible fluid.
— Blood flow, clotting, inner ear, embryo growth, ...

« Complicated parallelization

— Particle/Mesh method, but “Particles” connected into
materials (1D or 2D structures)

— Communication patterns irregular between particles
(structures) and mesh (fluid)

2D Dirac Delta Function

Code Size in Lines

Fortran Titanium
8000 4000

Note: Fortran code is not parallel

Joint work with Ed Givelberg, Armando Solar-Lezama, Charlie Peskin, Dave McQueen




Beyond the SPMD Model: Dynamic Threads

UPC uses a static threads (SPMD) programming model
— No dynamic load balancing built-in
Berkeley compiler has some extensions

— Allows programmers to execute active messages (AMS)

— AMs have limited functionality (no messages except acks) to
avoid deadlock in the network

A more dynamic runtime would have many other uses
— Application load imbalance, OS noise, fault tolerance

Two extremes are well-studied

— Dynamic parallelism without locality

— Static parallelism (with threads = processors) with locality

What issues do we run into if we want dynamic threads
with locality?




LU Factorization with Partial Pivoting

Interesting, heavily used computational kernel
— Non-trivial dependence patterns
Available in Linpack/LAPACK/ScaLAPACK

» LAPACK/ScaLAPACK are the second most popular mathematical
libraries by NERSC users

HPL benchmark
= Highly tuned parallel block LU factorization with partial pivoting
» Best optimized code around, written with MPI
Rules for extreme performance
= Locality and load balance (traditional blocked-cyclic layout)
= Maximize cache re-use; use blocks (merge blocks when possible)
= Avoid synchronization in the network: one-sided communication

= Avoid waiting on algorithmic synchronization and data transfers
using multithreading

Joint work with Parry Husbands
18




LU Factorization with Partial Pivoting

fori=1.n-1
swap rows so |a(i,l)|] = max{abs(a(:,i))} // pivot
for j=1+1:n

Completed part of U

1(,1) = a(,1)/a(i,1)] P ——— // scale to get |
for j=i:n =
u(i,j)=ad,j) 5 | /l update u
for j_i+1.n § !Trailing;Eltrix
for k=1+1:n 9" | to be updated /l trailing matrix
a(j,k) = a(j,k)-1(, )*u(l k)] /[ update

Code is blocked in practice, so that updates are matmuls

Joint work with Parry Husbands o




Parallel Tasks in LU

:

[]
n n-C
m, L aml || im , m
N[
) sorlne edges omiTted

 Panel Factorizations (parallel recursive
formulation used)

* Pivot application and update to U
e Trailing matrix updates




LU in UPC + Multi-threading

UPC uses a static threads (SPMD) programming model

Co-operative multi-threading used to mask latency and
to mask dependence delays (home-grown package)
— Thread volunteers to give up processor; never pre-empted
* Important for deep memory hierarchies
— Non-blocking (get) transfers to mask communication latency
— Remote enqueue used to spawn remote threads.

— Matrix blocks distributed in 2-d block-cyclic manner (fixed layout)
and tuned for block size.

Three levels of threads in LU code:

— UPC threads (data layout, each runs an event scheduling loop)
— Multithreaded BLAS (boost efficiency)

— User level (non-preemptive) threads with explicit yield
Operations “fire” when dependencies are satisfied.

— Carefully tuned application-specific scheduler use to prioritize
critical path and avoid memory allocator deadlock




UPC HP Linpack Performance
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eFaster than ScaLAPACK (less synchronization), comparable to MPI/HPL

eLarge scaling of UPC code on Itanium/Quadrics (Thunder)

«2.2 TFlops on 512p and 4.4 TFlops on 1024p
91.8% of peak on 1p Itanium 2 1.5GHz, 81.9% on 1p Opteron 2.2GHz




| essons Learned

One-sided communication is faster than 2-sided
— FFT example shown previous

Global address space can ease programming
— Dynamic scheduling can tolerate latencies
— More adaptive and easier to use (fewer knobs)

Principled scheduling that takes into account
— Critical Path, Memory use, Cache, etc.

Combination of dynamic loc balancing with
locality control has new challenges

— Previous work solve load balancing (Cilk) or locality
(MPI) but not both together

Current PGAS languages are not the final answer




Rethinking Software

Performance from Multicore:
How hard can it be?




Autotuning: Extreme Performance
Programming

 Automatic performance tuning
— Use machine time in place of human time for tuning

— Search over possible implementations
— Use performance models to restrict search space

« Programmers should write programs to generate
code, not the code itself

 Autotuning finds a good performance solution be
heuristics or exhaustive search
— Perl script generates many versions
— Generate SIMD-optimized kernels
— Autotuner anlyzes/runs kernels
— Uses search and heuristics
« PERI SciDAC is including some of these ideas into
compilers and domain-specific code generators
libraries, e.g., OSKI for sparse matrices




e Sparse matrix-vector multiply

 Challenges - -y

Sparse Matrix
Vector Multiplication

Important to applications

A X
Very low computational intensity (often >6 bytes/flop)

= likely memory bound
Difficult to exploit Superscalar
Difficult to exploit SIMD

Ir.regular memory access Optimization:
Difficult to load balance 1.5x more entries (zeros)

e Optimizations depend on matrix | > 1-5% speedup

Compilers won’t do this!




Naive Serial Implementation

Intel Clovertown

Sun Niagara2 (Huron)

AMD Opteron

IBM Cell Blade (PPE)

Vanilla C
implementation

Matrix stored in CSR
(compressed sparse
row)

Explored compiler
options, but only the
best is presented here

x86 core delivers > 10x
the performance of a
Niagara2 thread

Work by Sam Williams
with Vuduc, Oliker,
Shalf, Demmel, Yelick




Autotuned Performance

Intel Clovertown

Sun Niagara2 (Huron)

AMD Opteron

IBM Cell Blade (PPES)

Threads alone doesn'’t
show much benefit on
AMD; need to control
memory layout

+More DIMMs(opteron),
+FW fix, array padding(N2), etc...

+Cache/TLB Blocking

+Compression

+SW Prefetching

+NUMA/Affinity

Naive Pthreads

Naive




Autotuned Performance

Intel Clovertown

Sun Niagara2 (Huron)

(+Cell/SPE version)
AMD Opteron

IBM Cell Blade (SPES)

Wrote a double precision
Cell/SPE version

DMA, local store
blocked, NUMA aware,
etc...

Only 2x1 and larger
BCOO

Only the SpMV-proper
routine changed
About 12x faster

(median) than using the
PPEs alone.

+More DIMMs(opteron),
+FW fix, array padding(N2), etc...

+Cache/TLB Blocking

+Compression

+SW Prefetching

+NUMA/Affinity

Naive Pthreads

Naive




Autotuned Performance

Intel Clovertown

4% of peak flops
52% of bandwidth

Sun Niagara2 (Huron)
54% of peak flops

57% of bandwidth

(+Cell/SPE version)
AMD Opteron

20% of peak flops
65% of bandwidth

IBM Cell Blade (SPES)

40% of peak flops
92% of bandwidth

Wrote a double precision
Cell/SPE version

DMA, local store
blocked, NUMA aware,
etc...

Only 2x1 and larger
BCOO

Only the SpMV-proper
routine changed

About 12x faster than
using the PPEs alone.

+More DIMMs(opteron),
+FW fix, array padding(N2), etc...

+Cache/TLB Blocking

+Compression

+SW Prefetching

+NUMA/Affinity

Naive Pthreads

Naive




MPI vs. Threads

Intel Clovertown AMD Opteron _
« On x86 machines,

autotuned shared
memory MPICH
Implementation
rarely scales
beyond 2 threads

e Still debugging MPI
Issues on Niagaraz2,
but so far, it rarely

scales beyond 8
Sun Niagara2 (Huron) threads.

Autotuned pthreads
. Autotuned MPI

Naive Serial




LBMHD: Structure Grid Application

Plasma turbulence simulation

Two distributions:
— momentum distribution (27 components)
— magnetic distribution (15 vector components)
Three macroscopic quantities:
— Density
— Momentum (vector)
— Magnetic Field (vector)
Must read 73 doubles, and update(write) 79 doubles per point in
space
Requires about 1300 floating point operations per point in space
Just over 1.0 flops/byte (ideal)
No temporal locality between points in space within one time step

Work by Sam Williams with Jonathan Carter, Lenny Oliker, John
Shalf, and Kathy Yelick




Autotuned Performance

Intel Clovertown

Sun Niagara2 (Huron)

(Cell/SPE version)
AMD Opteron

IBM Cell Blade”

First attempt at cell
iImplementation.

VL, unrolling, reordering
fixed

Exploits DMA and double
buffering to load vectors

Straight to SIMD intrinsics.
Despite the relative
performance, Cell’s DP

iImplementation severely
Impairs performance

+SIMDization

+SW Prefetching

+Unrolling

+Vectorization

+Padding

Naive+NUMA

“collision() on




Autotuned Performance

(Cell/SPE version)

Intel Clovertown AMD Opteron

42% of peak flops

0
7.5% of peak flops 35% of bandwidth

17% of bandwidth

~Sun Niagara2 (Huron) N IBM Cell Blade®
<57% of peak flops

33% of bandwidth

18.

59% of peak flops

15% of bandwidth
\ +Unrolling

+SW Prefetching

+Vectorization

+Padding

Naive+NUMA

“collision() onR.iix



| essons Learned

Number of cores/chip will grow with Moore’s Law

Experience on multicore today is limited

— Current multicore (AMD and Intel) look like SMPs, but
GPUs, games, and others will influence them

Explicitly manage memory is easier to tune for
— Put/Get (DMA) operations are a good fit (PGAS?)

MPI is not a viable model for Exascale
— Does not get best performance

— Does not permit sharing, which will be critical
« Sharing data will be critical as cores count grows

A 10x10x10 grid subdomain has >50% surface area; we can'’t
afford “ghost” regions at this scale or below

— Even threads may be too heavy-weight for 1K cores

Need a new dynamic model for software
— Write programs to write applications and libraries




Rethinking Algorithms

Count memory, not Flops




Latency and Bandwidth-Avoiding

Many iterative algorithms are limited by
— Communication latency (frequent messages)
— Memory bandwidth

New optimal ways to implement Krylov subspace methods on
parallel and sequential computers

— Replace x = Ax by x = [AX,A2X,...AkX]

— Change GMRES, CG, Lanczos, ... accordingly
Theory

— Minimizes network latency costs on parallel machine

— Minimizes memory bandwidth and latency costs on sequential
machine

Performance models for 2D problem
— Up to 7x (overlap) or 15x (no overlap) speedups on BG/P
Measure speedup: 3.2x for out-of-core




Latency Avoiding Parallel Kernel for
[X, AX, A2X, ..., AKX]

Compute locally dependent entries
needed by neighbors

Send data to neighbors, receive from
neighbors

Compute remaining locally
dependent entries

Walit for receive
Compute remotely dependent entries




Locally Dependent Entries for [x,AX,...,A8x], A tridiagonal

Local Dependencies for k=8
T T T T T T

ABx s 0000000000000 O0O0O0 0 O
Alx O000D0D00O00O0O0O0O0 O O
Abx 6 O0O000D00000O0O0O0 0 O
AdX 5 O0O000D00000O0O0O0 0 O
A%X 4 O0O000D00000O0O0O0 0 O
A3x 3 O000D0D00O00O0O0O0O0 O O
A2y 2 O0O000D00000O0O0O0 0 O
AX 1 O000D0D00O00O0O0O0O0 O O
X 0 » 5 0000000000000 0 O

Can be computed without communication
k=8 fold reuse of A




Remotely Dependent Entries for [x,AX,...,A8X], A tridiagonal

Type (1) Remote Dependencies for k=8
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One message to get data needed to compute remotely dependent entries, not k=8
Price: redundant work




Fewer Remotely Dependent Entries for [x,AX,...,A8x], A tridiagonal

Type (2) Remote Dependencies for k=8
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Reduce redundant work by half




Can use Matrix Power Kernel, but change Algorithms

Matrix diag-cond-1.000000e-11: rel. 2-nrm resid.
I I I I I I |

Nonrestarted GMRES

v Restarted GMRES(192)
O Monomial-GMRES(24 3)
A Newton-GMRES(24 8)
O

Log10 of 2-norm relative residual
|
w

Work by Demmel and Hoemmen
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Conclusions

 Re-think Programming Models

— Software to make the most of hardware
 One-sided communication to avoid synchronization

 Global address space to increase sharing (re-use)
and for productivity

 Re-think software for libraries/applications
— Write self-tuning applications

 Re-think Algorithms
— Design for bottlenecks: latency and bandwidth




